Search results
Results From The WOW.Com Content Network
However, bounded and weakly closed sets are weakly compact so as a consequence every convex bounded closed set is weakly compact. As a consequence of the principle of uniform boundedness, every weakly convergent sequence is bounded. The norm is (sequentially) weakly lower-semicontinuous: if converges weakly to x, then
each sequence of elements of A has a subsequence that is weakly convergent in X; each sequence of elements of A has a weak cluster point in X; the weak closure of A is weakly compact. A set A (in any topological space) can be compact in three different ways: Sequential compactness: Every sequence from A has a convergent subsequence whose limit ...
In general, f need not be continuous for the weak topology on the unit ball B. For example, let T be the identity operator, which is not compact when H is infinite-dimensional. Take any orthonormal sequence {y n}. Then y n converges to 0 weakly, but lim f(y n) = 1 ≠ 0 = f(0). Let T be a compact operator on a Hilbert space H.
In measure theory Prokhorov's theorem relates tightness of measures to relative compactness (and hence weak convergence) in the space of probability measures. It is credited to the Soviet mathematician Yuri Vasilyevich Prokhorov, who considered probability measures on complete separable metric spaces. The term "Prokhorov’s theorem" is also ...
The predual of B(H) is the trace class operators C 1 (H), and it generates the w*-topology on B(H), called the weak-star operator topology or σ-weak topology. The weak-operator and σ-weak topologies agree on norm-bounded sets in B(H). A net {T α} ⊂ B(H) converges to T in WOT if and only Tr(T α F) converges to Tr(TF) for all finite-rank ...
Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity. There are many types of sequences and modes of convergence , and different proof techniques may be more appropriate than others for proving each type of convergence of each type ...
In mathematics, weak convergence may refer to: Weak convergence of random variables of a probability distribution; Weak convergence of measures, of a sequence of probability measures; Weak convergence (Hilbert space) of a sequence in a Hilbert space more generally, convergence in weak topology in a Banach space or a topological vector space
Proof: (sequential compactness implies closed and bounded) Suppose A {\displaystyle A} is a subset of R n {\displaystyle \mathbb {R} ^{n}} with the property that every sequence in A {\displaystyle A} has a subsequence converging to an element of A {\displaystyle A} .