When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weak convergence (Hilbert space) - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence_(Hilbert...

    However, bounded and weakly closed sets are weakly compact so as a consequence every convex bounded closed set is weakly compact. As a consequence of the principle of uniform boundedness, every weakly convergent sequence is bounded. The norm is (sequentially) weakly lower-semicontinuous: if converges weakly to x, then

  3. Eberlein–Šmulian theorem - Wikipedia

    en.wikipedia.org/wiki/Eberlein–Šmulian_theorem

    each sequence of elements of A has a subsequence that is weakly convergent in X; each sequence of elements of A has a weak cluster point in X; the weak closure of A is weakly compact. A set A (in any topological space) can be compact in three different ways: Sequential compactness: Every sequence from A has a convergent subsequence whose limit ...

  4. Compact operator on Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Compact_operator_on...

    In general, f need not be continuous for the weak topology on the unit ball B. For example, let T be the identity operator, which is not compact when H is infinite-dimensional. Take any orthonormal sequence {y n}. Then y n converges to 0 weakly, but lim f(y n) = 1 ≠ 0 = f(0). Let T be a compact operator on a Hilbert space H.

  5. Prokhorov's theorem - Wikipedia

    en.wikipedia.org/wiki/Prokhorov's_theorem

    In measure theory Prokhorov's theorem relates tightness of measures to relative compactness (and hence weak convergence) in the space of probability measures. It is credited to the Soviet mathematician Yuri Vasilyevich Prokhorov, who considered probability measures on complete separable metric spaces. The term "Prokhorov’s theorem" is also ...

  6. Weak operator topology - Wikipedia

    en.wikipedia.org/wiki/Weak_operator_topology

    The predual of B(H) is the trace class operators C 1 (H), and it generates the w*-topology on B(H), called the weak-star operator topology or σ-weak topology. The weak-operator and σ-weak topologies agree on norm-bounded sets in B(H). A net {T α} ⊂ B(H) converges to T in WOT if and only Tr(T α F) converges to Tr(TF) for all finite-rank ...

  7. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    Convergence proof techniques are canonical patterns of mathematical proofs that sequences or functions converge to a finite limit when the argument tends to infinity. There are many types of sequences and modes of convergence , and different proof techniques may be more appropriate than others for proving each type of convergence of each type ...

  8. Weak convergence - Wikipedia

    en.wikipedia.org/wiki/Weak_convergence

    In mathematics, weak convergence may refer to: Weak convergence of random variables of a probability distribution; Weak convergence of measures, of a sequence of probability measures; Weak convergence (Hilbert space) of a sequence in a Hilbert space more generally, convergence in weak topology in a Banach space or a topological vector space

  9. Bolzano–Weierstrass theorem - Wikipedia

    en.wikipedia.org/wiki/Bolzano–Weierstrass_theorem

    Proof: (sequential compactness implies closed and bounded) Suppose A {\displaystyle A} is a subset of R n {\displaystyle \mathbb {R} ^{n}} with the property that every sequence in A {\displaystyle A} has a subsequence converging to an element of A {\displaystyle A} .