When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orbital state vectors - Wikipedia

    en.wikipedia.org/wiki/Orbital_state_vectors

    Orbital position vector, orbital velocity vector, other orbital elements. In astrodynamics and celestial dynamics, the orbital state vectors (sometimes state vectors) of an orbit are Cartesian vectors of position and velocity that together with their time () uniquely determine the trajectory of the orbiting body in space.

  3. Error correction model - Wikipedia

    en.wikipedia.org/wiki/Error_correction_model

    ECMs are a theoretically-driven approach useful for estimating both short-term and long-term effects of one time series on another. The term error-correction relates to the fact that last-period's deviation from a long-run equilibrium, the error, influences its short-run dynamics. Thus ECMs directly estimate the speed at which a dependent ...

  4. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  5. Variance decomposition of forecast errors - Wikipedia

    en.wikipedia.org/wiki/Variance_decomposition_of...

    =, where is a lower triangular matrix obtained by a Cholesky decomposition of such that = ′, where is the covariance matrix of the errors Φ i = J A i J ′ , {\displaystyle \Phi _{i}=JA^{i}J',} where J = [ I k 0 … 0 ] , {\displaystyle J={\begin{bmatrix}\mathbf {I} _{k}&0&\dots &0\end{bmatrix}},} so that J {\displaystyle J} is a k ...

  6. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  7. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]

  8. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    The components of a vector are often represented arranged in a column. By contrast, a covector has components that transform like the reference axes. It lives in the dual vector space, and represents a linear map from vectors to scalars. The dot product operator involving vectors is a good example of a covector.

  9. Multidimensional Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_Chebyshev...

    August 2008) (Learn how and when to remove this message) In probability theory , the multidimensional Chebyshev's inequality [ 1 ] is a generalization of Chebyshev's inequality , which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.