Search results
Results From The WOW.Com Content Network
The NTL Model outlines how specific neural structures of the human brain shape the nature of thought and language and in turn what are the computational properties of such neural systems that can be applied to model thought and language in a computer system. After a framework for modeling language in a computer systems was established, the ...
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models.
Self-contained DNN Model Pre-processing and Post-processing Run-time configuration for tuning & calibration DNN model interconnect Common platform TensorFlow, Keras, Caffe, Torch: Algorithm training No No / Separate files in most formats No No No Yes ONNX: Algorithm training Yes No / Separate files in most formats No No No Yes
Haskell is a purely functional programming language. Lazy evaluation and the list and LogicT monads make it easy to express non-deterministic algorithms, which is often the case. Infinite data structures are useful for search trees. The language's features enable a compositional way to express algorithms.
For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...
A 3.1 TB dataset consisting of permissively licensed source code in 30 programming languages. Filtered through license detection and deduplication. 6 TB, 51.76B files (prior to deduplication); 3 TB, 5.28B files (after). 358 programming languages. Parquet Language modeling, autocompletion, program synthesis. 2022 [402] [403]
Some artificial neural networks are adaptive systems and are used for example to model populations and environments, which constantly change. Neural networks can be hardware- (neurons are represented by physical components) or software-based (computer models), and can use a variety of topologies and learning algorithms.
In addition to standard neural networks, Keras has support for convolutional and recurrent neural networks. It supports other common utility layers like dropout, batch normalization, and pooling. [12] Keras allows users to produce deep models on smartphones (iOS and Android), on the web, or on the Java Virtual Machine. [8]