Search results
Results From The WOW.Com Content Network
If this instantaneous return is received continuously for one period, then the initial value P t-1 will grow to = during that period. See also continuous compounding . Since this analysis did not adjust for the effects of inflation on the purchasing power of P t , RS and RC are referred to as nominal rates of return .
The geometric average return is equivalent to the cumulative return over the whole n periods, converted into a rate of return per period. Where the individual sub-periods are each equal (say, 1 year), and there is reinvestment of returns, the annualized cumulative return is the geometric average rate of return.
Given a principal deposit and a recurring deposit, the total return of an investment can be calculated via the compound interest gained per unit of time. If required, the interest on additional non-recurring and recurring deposits can also be defined within the same formula (see below). [12] = principal deposit
Total shareholder return (TSR) (or simply total return) is a measure of the performance of different companies' stocks and shares over time. It combines share price appreciation and dividends paid to show the total return to the shareholder expressed as an annualized percentage.
The rate of return on a portfolio can be calculated indirectly as the weighted average rate of return on the various assets within the portfolio. [3] The weights are proportional to the value of the assets within the portfolio, to take into account what portion of the portfolio each individual return represents in calculating the contribution of that asset to the return on the portfolio.
Compound annual growth rate (CAGR) is a business, economics and investing term representing the mean annualized growth rate for compounding values over a given time period.
Given a collection of pairs (time, cash flow) representing a project, the NPV is a function of the rate of return. The internal rate of return is a rate for which this function is zero, i.e. the internal rate of return is a solution to the equation NPV = 0 (assuming no arbitrage conditions exist).
The time-weighted return (TWR) [1] [2] is a method of calculating investment return, where returns over sub-periods are compounded together, with each sub-period weighted according to its duration. The time-weighted method differs from other methods of calculating investment return, in the particular way it compensates for external flows.