Search results
Results From The WOW.Com Content Network
In geometry, a glide reflection or transflection is a geometric transformation that consists of a reflection across a hyperplane and a translation ("glide") in a direction parallel to that hyperplane, combined into a single transformation.
Point Q is the reflection of point P through the line AB. In a plane (or, respectively, 3-dimensional) geometry, to find the reflection of a point drop a perpendicular from the point to the line (plane) used for reflection, and extend it the same distance on the other side. To find the reflection of a figure, reflect each point in the figure.
In geometry, a point reflection (also called a point inversion or central inversion) is a geometric transformation of affine space in which every point is reflected across a designated inversion center, which remains fixed. In Euclidean or pseudo-Euclidean spaces, a point reflection is an isometry (preserves distance). [1]
These equations can be proved through straightforward matrix multiplication and application of trigonometric identities, specifically the sum and difference identities.. The set of all reflections in lines through the origin and rotations about the origin, together with the operation of composition of reflections and rotations, forms a group.
For example, within transformation geometry, the properties of an isosceles triangle are deduced from the fact that it is mapped to itself by a reflection about a certain line. This contrasts with the classical proofs by the criteria for congruence of triangles .
Transformations with reflection are represented by matrices with a determinant of −1. This allows the concept of rotation and reflection to be generalized to higher dimensions. In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix.
Reflection. Reflections, or mirror isometries, denoted by F c,v, where c is a point in the plane and v is a unit vector in R 2.(F is for "flip".) have the effect of reflecting the point p in the line L that is perpendicular to v and that passes through c.
The geometric plane of Lobachevsky can be displayed in D with circular arcs perpendicular to the boundary of D signifying hyperbolic lines. Using the arithmetic and geometry of complex numbers, and Möbius transformations, there is the Poincaré disc model of the hyperbolic plane: Suppose a and b are complex numbers with a a* − b b* = 1. Note ...