When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Osculating circle - Wikipedia

    en.wikipedia.org/wiki/Osculating_circle

    The circle with center at Q and with radius R is called the osculating circle to the curve γ at the point P. If C is a regular space curve then the osculating circle is defined in a similar way, using the principal normal vector N. It lies in the osculating plane, the plane spanned by the tangent and principal normal vectors T and N at the ...

  3. Osculating curve - Wikipedia

    en.wikipedia.org/wiki/Osculating_curve

    The osculating circle to C at p, the osculating curve from the family of circles. The osculating circle shares both its first and second derivatives (equivalently, its slope and curvature) with C. [1] [2] [4] The osculating parabola to C at p, the osculating curve from the family of parabolas, has third order contact with C. [2] [4]

  4. Contact (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Contact_(mathematics)

    A circle with 1st-order contact (tangent) A circle with 2nd-order contact (osculating) A circle with 3rd-order contact at a vertex of a curve. For each point S(t) on a smooth plane curve S, there is exactly one osculating circle, whose radius is the reciprocal of κ(t), the curvature of S at t.

  5. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    Animation depicting evolution of a Cornu spiral with the tangential circle with the same radius of curvature as at its tip, also known as an osculating circle.. To travel along a circular path, an object needs to be subject to a centripetal acceleration (for example: the Moon circles around the Earth because of gravity; a car turns its front wheels inward to generate a centripetal force).

  6. Center of curvature - Wikipedia

    en.wikipedia.org/wiki/Center_of_curvature

    The osculating circle to the curve is centered at the centre of curvature. Cauchy defined the center of curvature C as the intersection point of two infinitely close normal lines to the curve. [1] The locus of centers of curvature for each point on the curve comprise the evolute of the curve.

  7. Four-vertex theorem - Wikipedia

    en.wikipedia.org/wiki/Four-vertex_theorem

    The four-vertex theorem was first proved for convex curves (i.e. curves with strictly positive curvature) in 1909 by Syamadas Mukhopadhyaya. [8] His proof utilizes the fact that a point on the curve is an extremum of the curvature function if and only if the osculating circle at that point has fourth-order contact with the curve; in general the osculating circle has only third-order contact ...

  8. Osculate - Wikipedia

    en.wikipedia.org/wiki/Osculate

    osculating circle; osculating curve; osculating plane; osculating orbit; osculating sphere; The obsolete Quinarian system of biological classification attempted to group creatures into circles which could touch or overlap with adjacent circles, a phenomenon called 'osculation'.

  9. List of circle topics - Wikipedia

    en.wikipedia.org/wiki/List_of_circle_topics

    Nine-point circleCircle constructed from a triangle; Orthocentroidal circleCircle constructed from a triangle; Osculating circleCircle of immediate corresponding curvature of a curve at a point; Riemannian circle – Great circle with a characteristic length