When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gravitational energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_energy

    For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.

  3. List of unsolved problems in physics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.

  4. Scalar theories of gravitation - Wikipedia

    en.wikipedia.org/wiki/Scalar_theories_of_gravitation

    [7] [8] [9] The Watt–Misner theory (1999) is a recent example of a scalar theory of gravitation. It is not intended as a viable theory of gravitation (since, as Watt and Misner point out, it is not consistent with observation), but as a toy theory which can be useful in testing numerical relativity schemes. It also has pedagogical value. [10]

  5. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    The equivalence between mass and energy, as expressed by the formula E = mc 2, is the most famous consequence of special relativity. In relativity, mass and energy are two different ways of describing one physical quantity. If a physical system has energy, it also has the corresponding mass, and vice versa.

  6. Gravitational potential - Wikipedia

    en.wikipedia.org/wiki/Gravitational_potential

    The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero. The gravitational field , and thus the acceleration of a small body in the space around the massive object, is the negative gradient of the gravitational potential.

  7. Gravitational field - Wikipedia

    en.wikipedia.org/wiki/Gravitational_field

    In classical mechanics, a gravitational field is a physical quantity. [5] A gravitational field can be defined using Newton's law of universal gravitation.Determined in this way, the gravitational field g around a single particle of mass M is a vector field consisting at every point of a vector pointing directly towards the particle.

  8. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    The first test of Newton's law of gravitation between masses in the laboratory was the Cavendish experiment conducted by the British scientist Henry Cavendish in 1798. [5] It took place 111 years after the publication of Newton's Principia and approximately 71 years after his death.

  9. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    "Exact solutions of the gravitational field equations". In Witten, L. (ed.). Gravitation: An Introduction to Current Research. Wiley. pp. 49– 101. hdl:11858/00-001M-0000-0013-5F17-4. OCLC 504779224. A classic survey, including important original work such as the symmetry classification of vacuum pp-wave spacetimes.