Search results
Results From The WOW.Com Content Network
To find the reflection of a figure, reflect each point in the figure. To reflect point P through the line AB using compass and straightedge, proceed as follows (see figure): Step 1 (red): construct a circle with center at P and some fixed radius r to create points A′ and B′ on the line AB, which will be equidistant from P.
This isometry maps the x-axis to itself; any other line which is parallel to the x-axis gets reflected in the x-axis, so this system of parallel lines is left invariant. The isometry group generated by just a glide reflection is an infinite cyclic group. [1]
So suppose p 1, p 2, p 3 map to q 1, q 2, q 3; we can generate a sequence of mirrors to achieve this as follows. If p 1 and q 1 are distinct, choose their perpendicular bisector as mirror. Now p 1 maps to q 1; and we will pass all further mirrors through q 1, leaving it fixed. Call the images of p 2 and p 3 under this reflection p 2 ′ and p 3
To find the amplitudes for reflection and transmission for incidence from the left, we set in the above equations A → = 1 (incoming particle), A ← = √ R (reflection), B ← = 0 (no incoming particle from the right) and B → = √ Tk 1 /k 2 (transmission [1]). We then solve for T and R. The result is:
A point P has coordinates (x, y) with respect to the original system and coordinates (x′, y′) with respect to the new system. [1] In the new coordinate system, the point P will appear to have been rotated in the opposite direction, that is, clockwise through the angle . A rotation of axes in more than two dimensions is defined similarly.
In mathematics, reflection through the origin refers to the point reflection of Euclidean space R n across the origin of the Cartesian coordinate system. Reflection through the origin is an orthogonal transformation corresponding to scalar multiplication by − 1 {\displaystyle -1} , and can also be written as − I {\displaystyle -I} , where I ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, a reflection formula or reflection relation for a function f is a relationship between f(a − x) and f(x). It is a special case of a functional equation . It is common in mathematical literature to use the term "functional equation" for what are specifically reflection formulae.