Search results
Results From The WOW.Com Content Network
The simplest chi-squared distribution is the square of a standard normal distribution. So wherever a normal distribution could be used for a hypothesis test, a chi-squared distribution could be used. Suppose that Z {\displaystyle Z} is a random variable sampled from the standard normal distribution, where the mean is 0 {\displaystyle 0} and the ...
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
The square of a standard normal random variable has a chi-squared distribution with one degree of freedom. If X is a Student’s t random variable with ν degree of freedom, then X 2 is an F (1,ν) random variable. If X is a double exponential random variable with mean 0 and scale λ, then |X| is an exponential random variable with mean λ.
It is the distribution of the positive square root of a sum of squared independent Gaussian random variables. Equivalently, it is the distribution of the Euclidean distance between a multivariate Gaussian random variable and the origin. The chi distribution describes the positive square roots of a variable obeying a chi-squared distribution.
The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has (k − c) degrees of freedom, where k is the number of non-empty bins and c is the number
For the test of independence, also known as the test of homogeneity, a chi-squared probability of less than or equal to 0.05 (or the chi-squared statistic being at or larger than the 0.05 critical point) is commonly interpreted by applied workers as justification for rejecting the null hypothesis that the row variable is independent of the ...
From this representation, the noncentral chi-squared distribution is seen to be a Poisson-weighted mixture of central chi-squared distributions. Suppose that a random variable J has a Poisson distribution with mean /, and the conditional distribution of Z given J = i is chi-squared with k + 2i degrees of