When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Numeric precision in Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Numeric_precision_in...

    Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...

  3. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    Round-by-chop: The base-expansion of is truncated after the ()-th digit. This rounding rule is biased because it always moves the result toward zero. Round-to-nearest: () is set to the nearest floating-point number to . When there is a tie, the floating-point number whose last stored digit is even (also, the last digit, in binary form, is equal ...

  4. Truncation - Wikipedia

    en.wikipedia.org/wiki/Truncation

    Truncation of positive real numbers can be done using the floor function. Given a number x ∈ R + {\displaystyle x\in \mathbb {R} _{+}} to be truncated and n ∈ N 0 {\displaystyle n\in \mathbb {N} _{0}} , the number of elements to be kept behind the decimal point, the truncated value of x is

  5. Rounding - Wikipedia

    en.wikipedia.org/wiki/Rounding

    In the example from "Double rounding" section, rounding 9.46 to one decimal gives 9.4, which rounding to integer in turn gives 9. With binary arithmetic, this rounding is also called "round to odd" (not to be confused with "round half to odd"). For example, when rounding to 1/4 (0.01 in binary), x = 2.0 ⇒ result is 2 (10.00 in binary)

  6. Kahan summation algorithm - Wikipedia

    en.wikipedia.org/wiki/Kahan_summation_algorithm

    Computers typically use binary arithmetic, but to make the example easier to read, it will be given in decimal. Suppose we are using six-digit decimal floating-point arithmetic, sum has attained the value 10000.0, and the next two values of input[i] are 3.14159 and 2.71828. The exact result is 10005.85987, which rounds to 10005.9.

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For example, the decimal number 123456789 cannot be exactly represented if only eight decimal digits of precision are available (it would be rounded to one of the two straddling representable values, 12345678 × 10 1 or 12345679 × 10 1), the same applies to non-terminating digits (. 5 to be rounded to either .55555555 or .55555556).

  8. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  9. Digital root - Wikipedia

    en.wikipedia.org/wiki/Digital_root

    The next number in the sequence (the smallest number of additive persistence 5) is 2 × 10 2×(10 22 − 1)/9 − 1 (that is, 1 followed by 2 222 222 222 222 222 222 222 nines). For any fixed base, the sum of the digits of a number is proportional to its logarithm ; therefore, the additive persistence is proportional to the iterated logarithm .