When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Brahmagupta's formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_formula

    In Euclidean geometry, Brahmagupta's formula, named after the 7th century Indian mathematician, is used to find the area of any convex cyclic quadrilateral (one that can be inscribed in a circle) given the lengths of the sides. Its generalized version, Bretschneider's formula, can be used with non-cyclic quadrilateral.

  3. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    It is named after the Indian mathematician Brahmagupta (598-668). [2] More specifically, let A, B, C and D be four points on a circle such that the lines AC and BD are perpendicular. Denote the intersection of AC and BD by M. Drop the perpendicular from M to the line BC, calling the intersection E.

  4. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle. This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic. The center of the circle and its radius are called the circumcenter and the circumradius respectively.

  5. Tangential quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Tangential_quadrilateral

    This circle is called the incircle of the quadrilateral or its inscribed circle, its center is the incenter and its radius is called the inradius. Since these quadrilaterals can be drawn surrounding or circumscribing their incircles, they have also been called circumscribable quadrilaterals , circumscribing quadrilaterals , and circumscriptible ...

  6. Brahmagupta's interpolation formula - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta's_interpolation...

    Brahmagupta's interpolation formula is a second-order polynomial interpolation formula developed by the Indian mathematician and astronomer Brahmagupta (598–668 CE) in the early 7th century CE. The Sanskrit couplet describing the formula can be found in the supplementary part of Khandakadyaka a work of Brahmagupta completed in 665 CE. [ 1 ]

  7. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Circle with similar triangles: circumscribed side, inscribed side and complement, inscribed split side and complement. Let one side of an inscribed regular n-gon have length s n and touch the circle at points A and B. Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter.

  8. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    It has also rarely been called a double circle quadrilateral [2] and double scribed quadrilateral. [ 3 ] If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. [ 4 ]

  9. Concyclic points - Wikipedia

    en.wikipedia.org/wiki/Concyclic_points

    A tangential polygon is one having an inscribed circle tangent to each side of the polygon; these tangency points are thus concyclic on the inscribed circle. Let one n-gon be inscribed in a circle, and let another n-gon be tangential to that circle at the vertices of the first n-gon. Then from any point P on the circle, the product of the ...