Search results
Results From The WOW.Com Content Network
1,10-Phenanthroline is an inhibitor of metallopeptidases, with one of the first observed instances reported in carboxypeptidase A. [11] Inhibition of the enzyme occurs by removal and chelation of the metal ion required for catalytic activity, leaving an inactive apoenzyme . 1,10-Phenanthroline targets mainly zinc metallopeptidases, with a much ...
Ferroin is the chemical compound with the formula [Fe(o-phen) 3]SO 4, where o-phen is an abbreviation for 1,10-phenanthroline, a bidentate ligand. The term "ferroin" is used loosely and includes salts of other anions such as chloride. [1] Ferroin is one of many transition metal complexes of 1,10-phenanthroline.
1,10-Phenanthroline (phen) is a heterocyclic organic compound. It is a white solid that is soluble in organic solvents. The 1,10 refer to the location of the nitrogen atoms that replace CH's in the hydrocarbon called phenanthrene. Abbreviated "phen", it is used as a ligand in coordination chemistry, forming strong complexes with most metal ions.
A spectrochemical series is a list of ligands ordered by ligand "strength", and a list of metal ions based on oxidation number, group and element.For a metal ion, the ligands modify the difference in energy Δ between the d orbitals, called the ligand-field splitting parameter in ligand field theory, or the crystal-field splitting parameter in crystal field theory.
1,10-Phenanthroline-5,6-dione is an organic compound with the formula C 12 H 6 O 2 N 2. It is the quinone derivative of 1,10-phenanthroline . The compound exhibits many reactions, including condensations with diamines to give quinoxalines and decarbonylation to give a diazafluorenone .
Jablonski diagram including vibrational levels for absorbance, non-radiative decay, and fluorescence. When a molecule absorbs a photon, the photon energy is converted and increases the molecule's internal energy level. Likewise, when an excited molecule releases energy, it can do so in the form of a photon.
Griffith and Orgel used the electrostatic principles established in crystal field theory to describe transition metal ions in solution and used molecular orbital theory to explain the differences in metal-ligand interactions, thereby explaining such observations as crystal field stabilization and visible spectra of transition metal complexes.
In Fluorescence lifetime and spectral imaging, phasor can be used to visualize the spectra and decay curves. [1] [2] In this method the Fourier transformation of the spectrum or decay curve is calculated and the resulted complex number is plotted on a 2D plot where the X-axis represents the real component and the Y-axis represents the imaginary ...