When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Subring - Wikipedia

    en.wikipedia.org/wiki/Subring

    The intersection of all subrings of a ring R is a subring that may be called the prime subring of R by analogy with prime fields. The prime subring of a ring R is a subring of the center of R , which is isomorphic either to the ring Z {\displaystyle \mathbb {Z} } of the integers or to the ring of the integers modulo n , where n is the smallest ...

  3. Ring of integers - Wikipedia

    en.wikipedia.org/wiki/Ring_of_integers

    One defines the ring of integers of a non-archimedean local field F as the set of all elements of F with absolute value ≤ 1; this is a ring because of the strong triangle inequality. [12] If F is the completion of an algebraic number field, its ring of integers is the completion of the latter's ring of integers. The ring of integers of an ...

  4. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The subring consisting of elements with finite support is called the group ring of G (which makes sense even if G is not commutative). If G is the ring of integers, then we recover the previous example (by identifying f with the series whose n th coefficient is f(n

  5. Unique factorization domain - Wikipedia

    en.wikipedia.org/wiki/Unique_factorization_domain

    In particular, the integers (also see Fundamental theorem of arithmetic), the Gaussian integers and the Eisenstein integers are UFDs. If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By induction, a polynomial ring in any number of variables over any UFD ...

  6. Group ring - Wikipedia

    en.wikipedia.org/wiki/Group_ring

    Let be a group, written multiplicatively, and let be a ring. The group ring of over , which we will denote by [], or simply , is the set of mappings : of finite support (() is nonzero for only finitely many elements ), where the module scalar product of a scalar in and a mapping is defined as the mapping (), and the module group sum of two mappings and is defined as the mapping () + ().

  7. Integrally closed domain - Wikipedia

    en.wikipedia.org/wiki/Integrally_closed_domain

    An element x in K is said to be almost integral over A if the subring A[x] of K generated by A and x is a fractional ideal of A; that is, if there is a nonzero such that for all . Then A is said to be completely integrally closed if every almost integral element of K is contained in A .

  8. Gaussian integer - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integer

    The Gaussian integers are the set [1] [] = {+,}, =In other words, a Gaussian integer is a complex number such that its real and imaginary parts are both integers.Since the Gaussian integers are closed under addition and multiplication, they form a commutative ring, which is a subring of the field of complex numbers.

  9. Order (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Order_(ring_theory)

    For example, we can take the subring of complex numbers of the form +, with and integers. [4] The maximal order question can be examined at a local field level. This technique is applied in algebraic number theory and modular representation theory.