When.com Web Search

  1. Ad

    related to: 1.6 recurring as a fraction in decimal definition pdf file form 16

Search results

  1. Results From The WOW.Com Content Network
  2. Periodic continued fraction - Wikipedia

    en.wikipedia.org/wiki/Periodic_continued_fraction

    where the repeating block is indicated by dots over its first and last terms. [2] If the initial non-repeating block is not present – that is, if k = -1, a 0 = a m and = [;,, …, ¯], the regular continued fraction x is said to be purely periodic.

  3. Continued fraction - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction

    Another meaning for generalized continued fraction is a generalization to higher dimensions. For example, there is a close relationship between the simple continued fraction in canonical form for the irrational real number α, and the way lattice points in two dimensions lie to either side of the line y = αx. Generalizing this idea, one might ...

  4. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    This is also a repeating binary fraction 0.0 0011... . It may come as a surprise that terminating decimal fractions can have repeating expansions in binary. It is for this reason that many are surprised to discover that 1/10 + ... + 1/10 (addition of 10 numbers) differs from 1 in binary floating point arithmetic. In fact, the only binary ...

  5. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  6. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    This form of fraction remained in use for centuries. [27] [30] Positional decimal fractions appear for the first time in a book by the Arab mathematician Abu'l-Hasan al-Uqlidisi written in the 10th century. [31] The Jewish mathematician Immanuel Bonfils used decimal fractions around 1350 but did not develop any notation to represent them. [32]

  7. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    The convergents of the continued fraction for φ are ratios of successive Fibonacci numbers: φ n = F n+1 / F n is the n-th convergent, and the (n + 1)-st convergent can be found from the recurrence relation φ n+1 = 1 + 1 / φ n. [31] The matrix formed from successive convergents of any continued fraction has a determinant of +1 or −1.

  8. Fixed-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_arithmetic

    A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...

  9. Number - Wikipedia

    en.wikipedia.org/wiki/Number

    Fractions are written as two integers, the numerator and the denominator, with a dividing bar between them. The fraction ⁠ m / n ⁠ represents m parts of a whole divided into n equal parts. Two different fractions may correspond to the same rational number; for example ⁠ 1 / 2 ⁠ and ⁠ 2 / 4 ⁠ are equal, that is: