When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann sum - Wikipedia

    en.wikipedia.org/wiki/Riemann_sum

    Specific choices of give different types of Riemann sums: . If = for all i, the method is the left rule [2] [3] and gives a left Riemann sum.; If = for all i, the method is the right rule [2] [3] and gives a right Riemann sum.

  3. Partition of an interval - Wikipedia

    en.wikipedia.org/wiki/Partition_of_an_interval

    A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.

  4. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    The Weyl tensor has the same basic symmetries as the Riemann tensor, but its 'analogue' of the Ricci tensor is zero: = = = = The Ricci tensor, the Einstein tensor, and the traceless Ricci tensor are symmetric 2-tensors:

  5. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule. Its Butcher tableau is:

  6. Midpoint method - Wikipedia

    en.wikipedia.org/wiki/Midpoint_method

    The midpoint method computes + so that the red chord is approximately parallel to the tangent line at the midpoint (the green line). In numerical analysis , a branch of applied mathematics , the midpoint method is a one-step method for numerically solving the differential equation ,

  7. Zeta function regularization - Wikipedia

    en.wikipedia.org/wiki/Zeta_function_regularization

    Zeta-function regularization gives an analytic structure to any sums over an arithmetic function f(n). Such sums are known as Dirichlet series. The regularized form ~ = = converts divergences of the sum into simple poles on the complex s-plane. In numerical calculations, the zeta-function regularization is inappropriate, as it is extremely slow ...

  8. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Although the original problem asks for integer lattice points in a circle, there is no reason not to consider other shapes, for example conics; indeed Dirichlet's divisor problem is the equivalent problem where the circle is replaced by the rectangular hyperbola. [3]

  9. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    One popular restriction is the use of "left-hand" and "right-hand" Riemann sums. In a left-hand Riemann sum, t i = x i for all i, and in a right-hand Riemann sum, t i = x i + 1 for all i. Alone this restriction does not impose a problem: we can refine any partition in a way that makes it a left-hand or right-hand sum by subdividing it at each t i.