Search results
Results From The WOW.Com Content Network
Some authors use the term Cox proportional hazards model even when specifying the underlying hazard function, [14] to acknowledge the debt of the entire field to David Cox. The term Cox regression model (omitting proportional hazards) is sometimes used to describe the extension of the Cox model to include time-dependent factors. However, this ...
Extensions of the Cox proportional hazard models are popular models in social sciences and medical science to assess associations between variables and risk of recurrence, or to predict recurrent event outcomes. Many extensions of survival models based on the Cox proportional hazards approach have been proposed to handle recurrent event data.
The Cox model assumes that the hazards are proportional. The proportional hazard assumption may be tested using the R function cox.zph(). A p-value which is less than 0.05 indicates that the hazards are not proportional. For the melanoma data we obtain p=0.222. Hence, we cannot reject the null hypothesis of the hazards being proportional.
Cox's 1958 paper [18] and further publications in the 1960s addressed the case of binary logistic regression. [19] The proportional hazards model, which is widely used in the analysis of survival data, was developed by him in 1972. [20] [21] An example of the use of the proportional hazards model is in survival analysis in medical research. The ...
This maximum likelihood maximization depends on the specification of the baseline hazard functions. These specifications include fully parametric models, piece-wise-constant proportional hazard models, or partial likelihood approaches that estimate the baseline hazard as a nuisance function. [4]
If the hazard ratio is , there are total subjects, is the probability a subject in either group will eventually have an event (so that is the expected number of events at the time of the analysis), and the proportion of subjects randomized to each group is 50%, then the logrank statistic is approximately normal with mean () and variance 1. [4]
In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cox_proportional_hazards_models&oldid=1180892472"