Search results
Results From The WOW.Com Content Network
The term Cox regression model (omitting proportional hazards) is sometimes used to describe the extension of the Cox model to include time-dependent factors. However, this usage is potentially ambiguous since the Cox proportional hazards model can itself be described as a regression model.
Extensions of the Cox proportional hazard models are popular models in social sciences and medical science to assess associations between variables and risk of recurrence, or to predict recurrent event outcomes. Many extensions of survival models based on the Cox proportional hazards approach have been proposed to handle recurrent event data.
This maximum likelihood maximization depends on the specification of the baseline hazard functions. These specifications include fully parametric models, piece-wise-constant proportional hazard models, or partial likelihood approaches that estimate the baseline hazard as a nuisance function. [4]
For quantitative predictor variables, an alternative method is Cox proportional hazards regression analysis. Cox PH models work also with categorical predictor variables, which are encoded as {0,1} indicator or dummy variables. The log-rank test is a special case of a Cox PH analysis, and can be performed using Cox PH software.
Cox's 1958 paper [18] and further publications in the 1960s addressed the case of binary logistic regression. [19] The proportional hazards model, which is widely used in the analysis of survival data, was developed by him in 1972. [20] [21] An example of the use of the proportional hazards model is in survival analysis in medical research. The ...
In the many-system case, this is defined as the proportional failure rate of the systems still functioning at time (as opposed to (), which is the expressed as a proportion of the initial number of systems). For convenience we first define the reliability (or survival function) as:
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cox_proportional_hazards_models&oldid=1180892472"
In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...