Search results
Results From The WOW.Com Content Network
This often causes ionic compounds to be very stable. Ionic bonds have high bond energy. Bond energy is the mean amount of energy required to break the bond in the gaseous state. Most ionic compounds exist in the form of a crystal structure, in which the ions occupy the corners of the crystal.
The resulting compound is called an ionic compound, and is said to be held together by ionic bonding. In ionic compounds there arise characteristic distances between ion neighbours from which the spatial extension and the ionic radius of individual ions may be derived. The most common type of ionic bonding is seen in compounds of metals and ...
The "size" of the charge in an ionic bond depends on the number of electrons transferred. An aluminum atom, for example, with a +3 charge has a relatively large positive charge. That positive charge then exerts an attractive force on the electron cloud of the other ion, which has accepted the electrons from the aluminum (or other) positive ion.
Figure 1. Example of salt bridge between amino acids glutamic acid and lysine demonstrating electrostatic interaction and hydrogen bonding. In chemistry, a salt bridge is a combination of two non-covalent interactions: hydrogen bonding and ionic bonding (Figure 1).
If it is the result of a reaction between a strong acid and a strong base, the result is a neutral salt. Weak acids reacted with weak bases can produce ionic compounds with both the conjugate base ion and conjugate acid ion, such as ammonium acetate. Some ions are classed as amphoteric, being able to react with either an acid or a base. [59]
Ionic bonding leads to separate positive and negative ions. Ionic charges are commonly between −3e to +3e. Ionic bonding commonly occurs in metal salts such as sodium chloride (table salt). A typical feature of ionic bonds is that the species form into ionic crystals, in which no ion is specifically paired with any single other ion in a ...
Ionic bonding between sodium and chlorine. An ionic bond can be approximated as complete transfer of one or more valence electrons of atoms participating in bond formation, resulting in a positive ion and a negative ion bound together by electrostatic forces. [4]
Ionic compounds can also be produced from their constituent ions by evaporation of their solvent, precipitation, freezing, a solid-state reaction, or the electron transfer reaction of reactive metals with reactive non-metals, such as halogen gases. Ionic compounds typically have high melting and boiling points, and are hard and brittle.