Search results
Results From The WOW.Com Content Network
Working in a coordinate chart with coordinates (,,,) labelled 1 to 4 respectively, we begin with the metric in its most general form (10 independent components, each of which is a smooth function of 4 variables). The solution is assumed to be spherically symmetric, static and vacuum.
The gradient of a function is obtained by raising the index of the differential , whose components are given by: =; =; =, = = The divergence of a vector field with components is
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
In an isotropic chart (on a static spherically symmetric spacetime), the metric (aka line element) takes the form = + (+ (+ ())), < <, < <, < <, < < Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation).
The Schwarzschild solution, taken to be valid for all r > 0, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although (like other black holes) it has rather bizarre properties. For r < r s the Schwarzschild radial coordinate r becomes timelike and the time coordinate t becomes spacelike. [22]
where (,) and (,) are two metric potentials dependent on Weyl's canonical coordinates {,}.The coordinate system {,,,} serves best for symmetries of Weyl's spacetime (with two Killing vector fields being = and =) and often acts like cylindrical coordinates, [2] but is incomplete when describing a black hole as {,} only cover the horizon and its exteriors.
Schwarzschild's equation is the formula by which you may calculate the intensity of any flux of electromagnetic energy after passage through a non-scattering medium when all variables are fixed, provided we know the temperature, pressure, and composition of the medium.
In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold.Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection.