Search results
Results From The WOW.Com Content Network
More formally, proposition B is a corollary of proposition A, if B can be readily deduced from A or is self-evident from its proof. In many cases, a corollary corresponds to a special case of a larger theorem, [4] which makes the theorem easier to use and apply, [5] even though its importance is generally considered to be secondary to that of ...
A porism is a mathematical proposition or corollary. It has been used to refer to a direct consequence of a proof, analogous to how a corollary refers to a direct consequence of a theorem. In modern usage, it is a relationship that holds for an infinite range of values but only if a certain condition is assumed, such as Steiner's porism. [1]
The following corollary is also known as Nakayama's lemma, and it is in this form that it most often appears. [ 4 ] Statement 3 : If M {\displaystyle M} is a finitely generated module over R {\displaystyle R} , J ( R ) {\displaystyle J(R)} is the Jacobson radical of R {\displaystyle R} , and J ( R ) M = M {\displaystyle J(R)M=M} , then M = 0 ...
In mathematics and other fields, [a] a lemma (pl.: lemmas or lemmata) is a generally minor, proven proposition which is used to prove a larger statement. For that reason, it is also known as a "helping theorem" or an "auxiliary theorem".
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements . [ 1 ]
Euler's theorem with parallelogram. Euler originally derived the theorem above as corollary from slightly different theorem that requires the introduction of an additional point, but provides more structural insight.
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language.In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory.
In traditional logic, a proposition (Latin: propositio) is a spoken assertion (oratio enunciativa), not the meaning of an assertion, as in modern philosophy of language and logic. A categorical proposition is a simple proposition containing two terms, subject (S) and predicate (P), in which the predicate is either asserted or denied of the subject.