Search results
Results From The WOW.Com Content Network
In a fission nuclear reactor, uranium-238 can be used to generate plutonium-239, which itself can be used in a nuclear weapon or as a nuclear-reactor fuel supply. In a typical nuclear reactor, up to one-third of the generated power comes from the fission of 239 Pu, which is not supplied as a fuel to the reactor, but rather, produced from 238 U. [5] A certain amount of production of 239
For the free neutron, the decay energy for this process (based on the rest masses of the neutron, proton and electron) is 0.782 343 MeV. That is the difference between the rest mass of the neutron and the sum of the rest masses of the products. That difference has to be carried away as kinetic energy.
The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified in natural samples (tellurium-128, barium-130). There are 35 of these (see these nuclides), of which 25 have half-lives longer than 10 13 years. With most of these 25, decay is difficult to observe and for ...
Technetium-99m ("m" indicates that this is a metastable nuclear isomer) is used in radioactive isotope medical tests. For example, technetium-99m is a radioactive tracer that medical imaging equipment tracks in the human body.
Protactinium-231 is the longest-lived isotope of protactinium, with a half-life of 32,760 years. In nature, it is found in trace amounts as part of the actinium series, which starts with the primordial isotope uranium-235; the equilibrium concentration in uranium ore is 46.55 231 Pa per million 235 U.
a photopeak (full energy peak) at an energy of 662 keV The Compton distribution is a continuous distribution that is present up to channel 150 in Figure 1. The distribution arises because of primary gamma rays undergoing Compton scattering within the crystal: Depending on the scattering angle, the Compton electrons have different energies and ...
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds.
One barn is 10 −28 square metres, about the cross-sectional area of a uranium nucleus. The name probably derives from early neutron-deflection experiments, when the uranium nucleus was described, and the phrases "big as a barn" and "hit a barn door" were used. Barn are typically used for cross sections in nuclear and particle physics.