When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    The time-averaged power flow (according to the instantaneous Poynting vector averaged over a full cycle, for instance) is then given by the real part of S m. The imaginary part is usually ignored, however, it signifies "reactive power" such as the interference due to a standing wave or the near field of an antenna.

  3. Cross section (physics) - Wikipedia

    en.wikipedia.org/wiki/Cross_section_(physics)

    where = ⁡ [] is the time averaged Poynting vector. If W a > 0 {\displaystyle W_{\text{a}}>0} energy is absorbed within the sphere, otherwise energy is being created within the sphere. We will not consider this case here.

  4. Maxwell stress tensor - Wikipedia

    en.wikipedia.org/wiki/Maxwell_stress_tensor

    All but the last term of can be written as the tensor divergence of the Maxwell stress tensor, giving: = +, As in the Poynting's theorem, the second term on the right side of the above equation can be interpreted as the time derivative of the EM field's momentum density, while the first term is the time derivative of the momentum density for ...

  5. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    The result is a gradual spiral of dust grains into the Sun. Over long periods of time, this effect cleans out much of the dust in the Solar System. While rather small in comparison to other forces, the radiation pressure force is inexorable. Over long periods of time, the net effect of the force is substantial.

  6. Fresnel equations - Wikipedia

    en.wikipedia.org/wiki/Fresnel_equations

    The Poynting vector for a wave is a vector whose component in any direction is the irradiance (power per unit area) of that wave on a surface perpendicular to that direction. For a plane sinusoidal wave the Poynting vector is ⁠ 1 / 2 ⁠ ‍ Re{E × H ∗}, where E and H are due only to the

  7. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).

  8. Method of averaging - Wikipedia

    en.wikipedia.org/wiki/Method_of_averaging

    The purpose of the method of averaging is to tell us the qualitative behavior of the vector field when we average it over a period of time. It guarantees that the solution y ( t ) {\displaystyle y(t)} approximates x ( t ) {\displaystyle x(t)} for times t = O ( 1 / ε ) . {\displaystyle t={\mathcal {O}}(1/\varepsilon ).}

  9. Larmor formula - Wikipedia

    en.wikipedia.org/wiki/Larmor_formula

    The radius vector, , is the distance from the charged particle's position at the retarded time to the point of observation of the electromagnetic fields at the present time, is the charge's velocity divided by , ˙ is the charge's acceleration divided by , and = /.