Ad
related to: how do microcomputer function in plants and flowers
Search results
Results From The WOW.Com Content Network
The physiology of plant memory is documented in many studies and is understood to have four main physiological mechanisms that work together in synchrony to provide the plant with basic memory functions, and are thought to be precursors to advanced memory functions found in animals. These four mechanisms are the storing and recalling ...
Microspore embryogenesis is used in biotechnology to produce double haploid plants, which are immediately fixed as homozygous for each locus in only one generation. The haploid microspore is stressed to trigger the embryogenesis pathway and the resulting haploid embryo either doubles its genome spontaneously or with the help of chromosome ...
Plant ovules with megasporocytes before meiosis: Gymnosperm ovule on left, angiosperm ovule (inside ovary) on right. After megasporogenesis, the megaspore develops into the female gametophyte (the embryo sac) in a process called megagametogenesis. The process of megagametogenesis varies depending on which pattern of megasporogenesis occurred.
In response to this article, Francisco Calvo Garzón published an article in Plant Signaling and Behavior. [7] He states that, while plants do not have neurons as animals do, they do possess an information-processing system composed of cells. He argues that this system can be used as a basis for discussing the cognitive abilities of plants.
In seed plants, the microgametophyte is called pollen. Seed plant microgametophytes consists of several (typically two to five) cells when the pollen grains exit the sporangium. The megagametophyte develops within the megaspore of extant seedless vascular plants and within the megasporangium in a cone or flower in seed plants.
ABC model of flower development guided by three groups of homeotic genes. The ABC model of flower development is a scientific model of the process by which flowering plants produce a pattern of gene expression in meristems that leads to the appearance of an organ oriented towards sexual reproduction, a flower.
Plant fitness may also be increased in several ways. Relatedness may be a factor, as plants in a network are more likely to be related; therefore, kin selection might improve inclusive fitness and explain why a plant might support a fungus that helps other plants to acquire nutrients.
Plants live in association with diverse microbial consortia. These microbes, referred to as the plant's microbiota, live both inside (the endosphere) and outside (the episphere) of plant tissues, and play important roles in the ecology and physiology of plants. [5] "The core plant microbiome is thought to comprise keystone microbial taxa that ...