When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bounded set - Wikipedia

    en.wikipedia.org/wiki/Bounded_set

    The word "bounded" makes no sense in a general topological space without a corresponding metric. Boundary is a distinct concept; for example, a circle (not to be confused with a disk) in isolation is a boundaryless bounded set, while the half plane is unbounded yet has a boundary. A bounded set is not necessarily a closed set and vice

  3. Bounded function - Wikipedia

    en.wikipedia.org/wiki/Bounded_function

    A bounded operator: is not a bounded function in the sense of this page's definition (unless =), but has the weaker property of preserving boundedness; bounded sets are mapped to bounded sets (). This definition can be extended to any function f : X → Y {\displaystyle f:X\rightarrow Y} if X {\displaystyle X} and Y {\displaystyle Y} allow for ...

  4. Bounded set (topological vector space) - Wikipedia

    en.wikipedia.org/wiki/Bounded_set_(topological...

    Bounded sets are a natural way to define locally convex polar topologies on the vector spaces in a dual pair, as the polar set of a bounded set is an absolutely convex and absorbing set. The concept was first introduced by John von Neumann and Andrey Kolmogorov in 1935.

  5. Upper and lower bounds - Wikipedia

    en.wikipedia.org/wiki/Upper_and_lower_bounds

    A set with an upper (respectively, lower) bound is said to be bounded from above or majorized [1] (respectively bounded from below or minorized) by that bound. The terms bounded above ( bounded below ) are also used in the mathematical literature for sets that have upper (respectively lower) bounds.

  6. Totally bounded space - Wikipedia

    en.wikipedia.org/wiki/Totally_bounded_space

    Every compact set is totally bounded, whenever the concept is defined. [clarification needed] Every totally bounded set is bounded. A subset of the real line, or more generally of finite-dimensional Euclidean space, is totally bounded if and only if it is bounded. [5] [3]

  7. Uniform boundedness - Wikipedia

    en.wikipedia.org/wiki/Uniform_boundedness

    In mathematics, a uniformly bounded family of functions is a family of bounded functions that can all be bounded by the same constant. This constant is larger than or equal to the absolute value of any value of any of the functions in the family.

  8. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    The empty set is bounded, and the set of all reals is the only interval that is unbounded at both ends. Bounded intervals are also commonly known as finite intervals. Bounded intervals are bounded sets, in the sense that their diameter (which is equal to the absolute difference between the endpoints) is finite.

  9. Boundedness - Wikipedia

    en.wikipedia.org/wiki/Boundedness

    Bounded poset, a partially ordered set that has both a greatest and a least element; Bounded set, a set that is finite in some sense Bounded function, a function or sequence whose possible values form a bounded set; Bounded set (topological vector space), a set in which every neighborhood of the zero vector can be inflated to include the set