Search results
Results From The WOW.Com Content Network
At the very 3'-end of the telomere there is a 300 base pair overhang which can invade the double-stranded portion of the telomere forming a structure known as a T-loop. This loop is analogous to a knot, which stabilizes the telomere, and prevents the telomere ends from being recognized as breakpoints by the DNA repair machinery.
When the cell does this due to telomere-shortening, the ends of different chromosomes can be attached to each other. This solves the problem of lacking telomeres, but during cell division anaphase, the fused chromosomes are randomly ripped apart, causing many mutations and chromosomal abnormalities. As this process continues, the cell's genome ...
The end replication problem is handled in eukaryotic cells by telomere regions and telomerase. Telomeres extend the 3' end of the parental chromosome beyond the 5' end of the daughter strand. This single-stranded DNA structure can act as an origin of replication that recruits telomerase.
The replication fork is a structure that forms within the long helical DNA during DNA replication. ... Telomeres are regions of repetitive DNA close to the ends and ...
Telomere: Used to maintain chromosomal integrity by capping off the ends of the linear chromosomes. This region is a microsatellite , but its function is more specific than a simple tandem repeat. Throughout the eukaryotic kingdom, the overall structure of chromosome ends is conserved and is characterized by the telomeric tract - a series of ...
Telomerase RNA component, also known as TR, TER or TERC, is an ncRNA found in eukaryotes that is a component of telomerase, the enzyme used to extend telomeres. [3] [4] TERC serves as a template for telomere replication (reverse transcription) by telomerase.
In 1999 it was reported that telomeres, which cap the end of chromosomes, terminate in a lariat-like structure termed a T-loop (Telomere-loop). [11] This is a loop of both strands of the chromosome which are joined to an earlier point in the double-stranded DNA by the 3' strand end invading the strand pair to form a D-loop.
Sgo2 remains in subtelomeres, whose cells lack telomere DNA. Sgo2 represses the expression of subtelomeric genes that is in a different pass-way from the H3K9me3- Swi6-mediated heterochromatin. Sgo2 has also repressive effects for timing of subtelomeres replication by suppressing Sld3, [25] a replication factor, at the start of the replication ...