Search results
Results From The WOW.Com Content Network
For division to always yield one number rather than an integer quotient plus a remainder, the natural numbers must be extended to rational numbers or real numbers. In these enlarged number systems, division is the inverse operation to multiplication, that is a = c / b means a × b = c, as long as b is not zero.
Dividing the numerator and denominator of a fraction by the same non-zero number yields an equivalent fraction: if the numerator and the denominator of a fraction are both divisible by a number (called a factor) greater than 1, then the fraction can be reduced to an equivalent fraction with a smaller numerator and a smaller denominator.
It has two definitions: either the integer part of a division (in the case of Euclidean division) [2] or a fraction or ratio (in the case of a general division). For example, when dividing 20 (the dividend ) by 3 (the divisor ), the quotient is 6 (with a remainder of 2) in the first sense and 6 2 3 = 6.66... {\displaystyle 6{\tfrac {2}{3}}=6.66 ...
Zero divided by a negative or positive number is either zero or is expressed as a fraction with zero as numerator and the finite quantity as denominator. Zero divided by zero is zero. In 830, Mahāvīra unsuccessfully tried to correct the mistake Brahmagupta made in his book Ganita Sara Samgraha: "A number remains unchanged when divided by zero ...
Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see division algorithm.)
Animated example of multi-digit long division. A divisor of any number of digits can be used. In this example, 1260257 is to be divided by 37. First the problem is set up as follows: 37)1260257 Digits of the number 1260257 are taken until a number greater than or equal to 37 occurs. So 1 and 12 are less than 37, but 126 is greater.
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
A fraction that is reducible can be reduced by dividing both the numerator and denominator by a common factor. It can be fully reduced to lowest terms if both are divided by their greatest common divisor. [5] In order to find the greatest common divisor, the Euclidean algorithm or prime factorization can be used. The Euclidean algorithm is ...