Search results
Results From The WOW.Com Content Network
This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...
Retrieved from "https://en.wikipedia.org/w/index.php?title=Temperature_conversion_formulas&oldid=1028441669"
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The specific way of assigning numerical values for temperature is establishing a scale of temperature. [ 1 ] [ 2 ] [ 3 ] In practical terms, a temperature scale is always based on usually a single physical property of a simple thermodynamic system, called a thermometer , that defines a scaling function for mapping the temperature to the ...
Reversing this yields the formula for obtaining a quantity in units of Celsius from units of Fahrenheit; one could have started with the equivalence between 100 °C and 212 °F, which yields the same formula. Hence, to convert the numerical quantity value of a temperature T[F] in degrees Fahrenheit to a numerical quantity value T[C] in degrees ...
(Note - the relation between pressure, volume, temperature, and particle number which is commonly called "the equation of state" is just one of many possible equations of state.) If we know all k+2 of the above equations of state, we may reconstitute the fundamental equation and recover all thermodynamic properties of the system.
A temperature interval of 1 °F was equal to an interval of 5 ⁄ 9 degrees Celsius. With the Fahrenheit and Celsius scales now both defined by the kelvin, this relationship was preserved, a temperature interval of 1 °F being equal to an interval of 5 ⁄ 9 K and of 5 ⁄ 9 °C. The Fahrenheit and Celsius scales intersect numerically at −40 ...
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.