Search results
Results From The WOW.Com Content Network
At the very end of the T-loop, the single-stranded telomere DNA is held onto a region of double-stranded DNA by the telomere strand disrupting the double-helical DNA and base pairing to one of the two strands. This triple-stranded structure is called a displacement loop or D-loop. [66]
Double-stranded RNA forms an A-type helical structure, unlike the common B-type conformation taken by double-stranded DNA molecules. The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules.
Double-stranded nucleic acids are made up of complementary sequences, in which extensive Watson-Crick base pairing results in a highly repeated and quite uniform nucleic acid double-helical three-dimensional structure. [24] In contrast, single-stranded RNA and DNA molecules are not constrained to a regular double helix, and can adopt highly ...
A single strand of DNA, called the T-strand, is cut at nic by an enzyme called relaxase. [15] This single strand is eventually transferred to the recipient cell during the process of bacterial conjugation. Before this cleavage can occur, however, it is necessary for a group of proteins to attach to the oriT site.
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
A single-stranded non-circular DNA molecule has two non-identical ends, the 3' end and the 5' end (usually pronounced "three prime end" and "five prime end"). The numbers refer to the numbering of carbon atoms in the deoxyribose, which is a sugar forming an important part of the backbone of the DNA molecule.
The sequence of nucleobases on a nucleic acid strand is translated by cell machinery into a sequence of amino acids making up a protein strand. Each group of three bases, called a codon, corresponds to a single amino acid, and there is a specific genetic code by which each possible combination of three bases corresponds to a specific amino acid.
The DNA single-strand template serves to guide the synthesis of a complementary strand of DNA. [11] DNA replication begins at a specific site in the DNA molecule called the origin of replication. The enzyme helicase unwinds and separates a portion of the DNA molecule after which single-strand binding proteins react with and stabilize the ...