When.com Web Search

  1. Ads

    related to: pythagorean theorem calculator equal sides worksheet free

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  3. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...

  4. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

  5. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    In this way, this trigonometric identity involving the tangent and the secant follows from the Pythagorean theorem. The angle opposite the leg of length 1 (this angle can be labeled φ = π/2 − θ) has cotangent equal to the length of the other leg, and cosecant equal to the length of the hypotenuse. In that way, this trigonometric identity ...

  6. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    By the Pythagorean theorem we have b 2 = h 2 + d 2 and a 2 = h 2 + (c − d) 2 according to the figure at the right. Subtracting these yields a 2 − b 2 = c 2 − 2cd. This equation allows us to express d in terms of the sides of the triangle: = + +. For the height of the triangle we have that h 2 = b 2 − d 2.

  7. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    The Kepler triangle is a right triangle whose sides are in geometric progression. If the sides are formed from the geometric progression a, ar, ar 2 then its common ratio r is given by r = √ φ where φ is the golden ratio. Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up ...

  8. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    Two concepts that can be used to analyze this triangle, the Pythagorean theorem and the golden ratio, were both of interest to Kepler, as he wrote elsewhere: Geometry has two great treasures: one is the theorem of Pythagoras, the other the division of a line into extreme and mean ratio.

  9. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.