Search results
Results From The WOW.Com Content Network
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
In contrast to the mean absolute percentage error, SMAPE has both a lower and an upper bound. Indeed, the formula above provides a result between 0% and 200%. Indeed, the formula above provides a result between 0% and 200%.
Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a measure of the bias in the forecasts. A disadvantage of this measure is that it is undefined whenever a single actual value is zero.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
For example, we might want to calculate the relative change of −10 to −6. The above formula gives (−6) − (−10) / −10 = 4 / −10 = −0.4, indicating a decrease, yet in fact the reading increased. Measures of relative change are unitless numbers expressed as a fraction. Corresponding values of percent change would be ...
For example, if the mean height in a population of 21-year-old men is 1.75 meters, and one randomly chosen man is 1.80 meters tall, then the "error" is 0.05 meters; if the randomly chosen man is 1.70 meters tall, then the "error" is −0.05 meters.
In the examples below, we will take the values given as randomly chosen from a larger population of values.. The data set [100, 100, 100] has constant values. Its standard deviation is 0 and average is 100, giving the coefficient of variation as 0 / 100 = 0
In metrology, measurement uncertainty is the expression of the statistical dispersion of the values attributed to a quantity measured on an interval or ratio scale.. All measurements are subject to uncertainty and a measurement result is complete only when it is accompanied by a statement of the associated uncertainty, such as the standard deviation.