Search results
Results From The WOW.Com Content Network
The 233 U capture-to-fission ratio in a typical MSR neutron spectrum is an example of basic data that was improved. The effect of fissioning on the redox potential of the fuel salt was resolved. The deposition of some elements (" noble metals ") was expected, but the MSRE provided quantitative data on relative deposition on graphite, metal, and ...
Manifest functions are the consequences that people see, observe or even expect. It is explicitly stated and understood by the participants in the relevant action. The manifest function of a rain dance, according to Merton in his 1957 Social Theory and Social Structure, is to produce rain, and this outcome is intended and desired by people participating in the ritual.
In a nuclear reactor, the neutron population at any instant is a function of the rate of neutron production (due to fission processes) and the rate of neutron losses (due to non-fission absorption mechanisms and leakage from the system). When a reactor's neutron population remains steady from one generation to the next (creating as many new ...
Its (fission) nuclear cross section for slow thermal neutron is about 504.81 barns. For fast neutrons it is on the order of 1 barn. At thermal energy levels, about 5 of 6 neutron absorptions result in fission and 1 of 6 result in neutron capture forming uranium-236. [31] The fission-to-capture ratio improves for faster neutrons.
A less moderated neutron energy spectrum does worsen the capture/fission ratio for 235 U and especially 239 Pu, meaning that more fissile nuclei fail to fission on neutron absorption and instead capture the neutron to become a heavier nonfissile isotope, wasting one or more neutrons and increasing accumulation of heavy transuranic actinides ...
The study of proton emission has aided the understanding of nuclear deformation, masses and structure, and it is an example of quantum tunneling. Two examples of nuclides that emit neutrons are beryllium-13 (mean life 2.7 × 10 −21 s) and helium-5 (7 × 10 −22 s). Since only a neutron is lost in this process, the atom does not gain or lose ...
Although the thermal neutron fission cross section (σ f) of the resulting 233 U is comparable to 235 U and 239 Pu, it has a much lower capture cross section (σ γ) than the latter two fissile isotopes, providing fewer non-fissile neutron absorptions and improved neutron economy. The ratio of neutrons released per neutron absorbed (η) in 233 U
To be a useful fuel for nuclear fission chain reactions, the material must: Be in the region of the binding energy curve where a fission chain reaction is possible (i.e., above radium) Have a high probability of fission on neutron capture; Release more than one neutron on average per neutron capture.