Search results
Results From The WOW.Com Content Network
Pulse-Doppler radar for aircraft detection has two modes. Scan; Track; Scan mode involves frequency filtering, amplitude thresholding, and ambiguity resolution. Once a reflection has been detected and resolved, the pulse-Doppler radar automatically transitions to tracking mode for the volume of space surrounding the track.
AN/FPS-16 Radar Set block diagram. The AN/FPS-16 is a C-band monopulse radar utilizing a waveguide hybrid-labyrinth comparator to develop angle track information. The comparator receives RF signals from an array of four feed horns which are located at the focal point of a 12-foot (4 m) parabolic reflector.
The pulse width must be long enough to ensure that the radar emits sufficient energy so that the reflected pulse is detectable by its receiver. The amount of energy that can be delivered to a distant target is the product of two things; the peak output power of the transmitter, and the duration of the transmission.
Pulse Doppler radar may have 50 or more pulses between the radar and the reflector. Pulse Doppler relies on medium pulse repetition frequency (PRF) from about 3 kHz to 30 kHz. Each transmit pulse is separated by 5 km to 50 km distance. Range and speed of the target are folded by a modulo operation produced by the sampling process.
Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse. Monopulse radar avoids problems seen in conical scanning radar systems, which can be confused by rapid changes in signal strength.
The AN/APG-68 radar is a long range (Max Detection Range 80 kilometres [50 mi]) [2] Pulse-Doppler radar designed by Westinghouse (now Northrop Grumman) to replace AN/APG-66 radar in the General Dynamics F-16 Fighting Falcon. The AN/APG-68 radar is now currently being replaced on US Air Force F-16C/D Block 40/42 and 50/52 by the AN/APG-83 AESA ...
Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem (i.e. ground clutter, jamming, etc.). Through careful application of STAP, it ...
A plan position indicator (PPI) is a type of radar display that represents the radar antenna in the center of the display, with the distance from it and height above ground drawn as concentric circles. As the radar antenna rotates, a radial trace on the PPI sweeps in unison with it about the center point. It is the most common type of radar ...