Search results
Results From The WOW.Com Content Network
In inversive geometry, an inverse curve of a given curve C is the result of applying an inverse operation to C. Specifically, with respect to a fixed circle with center O and radius k the inverse of a point Q is the point P for which P lies on the ray OQ and OP · OQ = k 2 .
English. Read; Edit; View history; Tools. ... This is a list of Wikipedia articles about curves used in different fields: ... Inverse curve; Involute;
P ' is the inverse of P with respect to the circle. To invert a number in arithmetic usually means to take its reciprocal. A closely related idea in geometry is that of "inverting" a point. In the plane, the inverse of a point P with respect to a reference circle (Ø) with center O and radius r is a point P ', lying on the ray from O through P ...
Circle — negative pedal curve of a limaçon. In geometry, a negative pedal curve is a plane curve that can be constructed from another plane curve C and a fixed point P on that curve. For each point X ≠ P on the curve C, the negative pedal curve has a tangent that passes through X and is perpendicular to line XP.
Several notations for the inverse trigonometric functions exist. The most common convention is to name inverse trigonometric functions using an arc- prefix: arcsin(x), arccos(x), arctan(x), etc. [1] (This convention is used throughout this article.)
Sometimes, this multivalued inverse is called the full inverse of f, and the portions (such as √ x and − √ x) are called branches. The most important branch of a multivalued function (e.g. the positive square root) is called the principal branch , and its value at y is called the principal value of f −1 ( y ) .
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
This page was last edited on 2 November 2020, at 22:10 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.