Search results
Results From The WOW.Com Content Network
In mathematics and computer programming, exponentiating by squaring is a general method for fast computation of large positive integer powers of a number, or more generally of an element of a semigroup, like a polynomial or a square matrix. Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation.
Constructing a square with the same area as a given oblong using the geometric mean For a quadrature of a rectangle with the sides a and b it is necessary to construct a square with the side x = a b {\displaystyle x={\sqrt {ab}}} (the geometric mean of a and b ).
The square of an integer may also be called a square number or a perfect square. In algebra, the operation of squaring is often generalized to polynomials, other expressions, or values in systems of mathematical values other than the numbers. For instance, the square of the linear polynomial x + 1 is the quadratic polynomial (x + 1) 2 = x 2 ...
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
A non-negative integer is a square number when its square root is again an integer. For example, =, so 9 is a square number. A positive integer that has no square divisors except 1 is called square-free. For a non-negative integer n, the n th square number is n 2, with 0 2 = 0 being the zeroth one. The concept of square can be extended to some ...
In mathematics, Graeffe's method or Dandelin–Lobachesky–Graeffe method is an algorithm for finding all of the roots of a polynomial.It was developed independently by Germinal Pierre Dandelin in 1826 and Lobachevsky in 1834.
AOL latest headlines, entertainment, sports, articles for business, health and world news.
Latin squares and finite quasigroups are equivalent mathematical objects, although the former has a combinatorial nature while the latter is more algebraic.The listing below will consider the examples of some very small orders, which is the side length of the square, or the number of elements in the equivalent quasigroup.