When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  3. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    Generalized least squares; Generalized estimating equations; Weighted least squares, an alternative formulation; White test — a test for whether heteroskedasticity is present. Newey–West estimator; Quasi-maximum likelihood estimate

  4. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  5. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression , including variants for ordinary (unweighted), weighted , and generalized (correlated) residuals .

  6. Homoscedasticity and heteroscedasticity - Wikipedia

    en.wikipedia.org/wiki/Homoscedasticity_and...

    Heteroscedasticity does not cause ordinary least squares coefficient estimates to be biased, although it can cause ordinary least squares estimates of the variance (and, thus, standard errors) of the coefficients to be biased, possibly above or below the true of population variance. Thus, regression analysis using heteroscedastic data will ...

  7. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  8. Polynomial regression - Wikipedia

    en.wikipedia.org/wiki/Polynomial_regression

    The least-squares method was published in 1805 by Legendre and in 1809 by Gauss. The first design of an experiment for polynomial regression appeared in an 1815 paper of Gergonne . [ 3 ] [ 4 ] In the twentieth century, polynomial regression played an important role in the development of regression analysis , with a greater emphasis on issues of ...

  9. Generalized least squares - Wikipedia

    en.wikipedia.org/wiki/Generalized_least_squares

    The model is estimated by OLS or another consistent (but inefficient) estimator, and the residuals are used to build a consistent estimator of the errors covariance matrix (to do so, one often needs to examine the model adding additional constraints; for example, if the errors follow a time series process, a statistician generally needs some ...