Ad
related to: spin magnetic quantum number example questions
Search results
Results From The WOW.Com Content Network
The spin magnetic quantum number m s specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 1 ⁄ 2 , and m s is either + 1 ⁄ 2 or − 1 ⁄ 2 , often called "spin-up" and "spin-down", or α and β.
The phrase spin quantum number refers to quantized spin angular momentum. The symbol s is used for the spin quantum number, and m s is described as the spin magnetic quantum number [3] or as the z-component of spin s z. [4] Both the total spin and the z-component of spin are quantized, leading to two quantum numbers spin and spin magnet quantum ...
In quantum physics and chemistry, quantum numbers are quantities that characterize the possible states of the system. To fully specify the state of the electron in a hydrogen atom, four quantum numbers are needed. The traditional set of quantum numbers includes the principal, azimuthal, magnetic, and spin quantum numbers. To describe other ...
where S z is the spin component along the z axis, s z is the spin projection quantum number along the z axis. One can see that there are 2s + 1 possible values of s z. The number "2s + 1" is the multiplicity of the spin system. For example, there are only two possible values for a spin- 1 / 2 particle: s z = + 1 / 2 and s z = − ...
Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not 0, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.
If one measures the spin along a vertical axis, electrons are described as "spin up" or "spin down", based on the magnetic moment pointing up or down, respectively. To mathematically describe the experiment with spin + 1 2 {\displaystyle +{\frac {1}{2}}} particles, it is easiest to use Dirac 's bra–ket notation .
The general form of wavefunction for a system of particles, each with position r i and z-component of spin s z i. Sums are over the discrete variable s z , integrals over continuous positions r . For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is ...
In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment (symbol μ e) is −9.284 764 6917 (29) × 10 −24 J⋅T −1. [1]