Search results
Results From The WOW.Com Content Network
A transversely isotropic material is one with physical properties that are symmetric about an axis that is normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and thus, within this plane, the material properties are the same in all directions. Hence, such materials are also known as "polar anisotropic" materials.
Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.
"Kevlar KM2 fiber is a transversely isotropic material. Its tensile stress–strain response in the axial direction is linear and elastic until failure. However, the overall deformation in the transverse directions is nonlinear and nonelastic, although it can be treated linearly and elastically in infinitesimal strain range.
Transversely isotropic materials are special orthotropic materials that have one axis of symmetry (any other pair of axes that are perpendicular to the main one and orthogonal among themselves are also axes of symmetry). One common example of transversely isotropic material with one axis of symmetry is a polymer reinforced by parallel glass or ...
Glass and metals are examples of isotropic materials. [3] Common anisotropic materials include wood (because its material properties are different parallel to and perpendicular to the grain) and layered rocks such as slate. Isotropic materials are useful since they are easier to shape, and their behavior is easier to predict.
Isotropic solids tend to be of interest when developing models for physical behavior of materials, as they tend to allow for dramatic simplifications of theory; for example, conductivity in metals of the cubic crystal system can be described with single scalar value, rather than a tensor. [1]
For a transversely isotropic material, if the plane of isotropy is 1–2, then ... = transverse tensile strength, = longitudinal compressive ...
The material is isotropic (or orthotropic), linear elastic, ... is an applied transverse load. For materials with Poisson's ratios ) close to 0.3 ...