Search results
Results From The WOW.Com Content Network
Additionally, the motor unit action potential is an all-or-none phenomenon - once the recruitment threshold (the stimulus intensity at which a motor unit begins to fire) is reached, it fires fully. Electrical stimulation of nerves reverses the recruitment order, due to the lower resistance of the larger motor neuron axons.
A widely used type of composition is the nonlinear weighted sum, where () = (()), where (commonly referred to as the activation function [3]) is some predefined function, such as the hyperbolic tangent, sigmoid function, softmax function, or rectifier function. The important characteristic of the activation function is that it provides a smooth ...
Figure FHN: To mimick the action potential, the FitzHugh–Nagumo model and its relatives use a function g(V) with negative differential resistance (a negative slope on the I vs. V plot). For comparison, a normal resistor would have a positive slope, by Ohm's law I = GV, where the conductance G is the inverse of resistance G=1/R.
In biology, a motor unit is made up of a motor neuron and all of the skeletal muscle fibers innervated by the neuron's axon terminals, including the neuromuscular junctions between the neuron and the fibres. [1] Groups of motor units often work together as a motor pool to coordinate the contractions of a single muscle. The concept was proposed ...
The activating function represents the rate of membrane potential change if the neuron is in resting state before the stimulation. Its physical dimensions are V/s or mV/ms. In other words, it represents the slope of the membrane voltage at the beginning of the stimulation. [8]
Each alpha motor neuron and the extrafusal muscle fibers innervated by it make up a motor unit. [1] The connection between the alpha motor neuron and the extrafusal muscle fiber is a neuromuscular junction, where the neuron's signal, the action potential, is transduced to the muscle fiber by the neurotransmitter acetylcholine.
A motor neuron (or motoneuron or efferent neuron [1]) is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirectly control effector organs, mainly muscles and glands. [2]
The spiking neuron model by Nossenson & Messer [72] [73] [74] produces the probability of the neuron firing a spike as a function of either an external or pharmacological stimulus. [72] [73] [74] The model consists of a cascade of a receptor layer model and a spiking neuron model, as shown in Fig 4. The connection between the external stimulus ...