When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Penrose diagram - Wikipedia

    en.wikipedia.org/wiki/Penrose_diagram

    Penrose diagram of an infinite Minkowski universe, horizontal axis u, vertical axis v. In theoretical physics, a Penrose diagram (named after mathematical physicist Roger Penrose) is a two-dimensional diagram capturing the causal relations between different points in spacetime through a conformal treatment of infinity.

  3. Penrose tiling - Wikipedia

    en.wikipedia.org/wiki/Penrose_tiling

    The pattern represented by every finite patch of tiles in a Penrose tiling occurs infinitely many times throughout the tiling. They are quasicrystals : implemented as a physical structure a Penrose tiling will produce diffraction patterns with Bragg peaks and five-fold symmetry, revealing the repeated patterns and fixed orientations of its ...

  4. Null infinity - Wikipedia

    en.wikipedia.org/wiki/Null_infinity

    The Penrose diagram for Minkowski spacetime. Radial position is on the horizontal axis and time is on the vertical axis. Null infinity is the diagonal boundary of the diagram, designated with script 'I'. The metric for a flat Minkowski spacetime in spherical coordinates is = + +.

  5. File:Penrose Diagrams of various black hole solutions.svg

    en.wikipedia.org/wiki/File:Penrose_Diagrams_of...

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  6. Conformal map - Wikipedia

    en.wikipedia.org/wiki/Conformal_map

    Carathéodory's theorem – A conformal map extends continuously to the boundary; Penrose diagram; Schwarz–Christoffel mapping – a conformal transformation of the upper half-plane onto the interior of a simple polygon; Special linear group – transformations that preserve volume (as opposed to angles) and orientation

  7. List of aperiodic sets of tiles - Wikipedia

    en.wikipedia.org/wiki/List_of_aperiodic_sets_of...

    In geometry, a tiling is a partition of the plane (or any other geometric setting) into closed sets (called tiles), without gaps or overlaps (other than the boundaries of the tiles). [1] A tiling is considered periodic if there exist translations in two independent directions which map the tiling onto itself.

  8. Aperiodic set of prototiles - Wikipedia

    en.wikipedia.org/wiki/Aperiodic_set_of_prototiles

    The best-known examples of an aperiodic set of tiles are the various Penrose tiles. [4] [5] The known aperiodic sets of prototiles are seen on the list of aperiodic sets of tiles. The underlying undecidability of the domino problem implies that there exists no systematic procedure for deciding whether a given set of tiles can tile the plane.

  9. Illumination problem - Wikipedia

    en.wikipedia.org/wiki/Illumination_problem

    Roger Penrose's solution of the illumination problem using elliptical arcs (blue) and straight line segments (green), with 3 positions of the single light source (red spot). The purple crosses are the foci of the larger arcs. Lit and unlit regions are shown in yellow and grey respectively.