When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The 2D Z-transform, similar to the Z-transform, is used in multidimensional signal processing to relate a two-dimensional discrete-time signal to the complex frequency domain in which the 2D surface in 4D space that the Fourier transform lies on is known as the unit surface or unit bicircle.

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    Many of the standard properties of the Fourier transform are immediate consequences of this more general framework. [33] For example, the square of the Fourier transform, W 2, is an intertwiner associated with J 2 = −I, and so we have (W 2 f)(x) = f (−x) is the reflection of the original function f.

  4. 2D Z-transform - Wikipedia

    en.wikipedia.org/wiki/2D_Z-transform

    The 2D Z-transform, similar to the Z-transform, is used in multidimensional signal processing to relate a two-dimensional discrete-time signal to the complex frequency domain in which the 2D surface in 4D space that the Fourier transform lies on is known as the unit surface or unit bicircle. [1] The 2D Z-transform is defined by

  5. DFT matrix - Wikipedia

    en.wikipedia.org/wiki/DFT_matrix

    In this case, if we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform. A rectangular ...

  6. Multidimensional discrete convolution - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_discrete...

    For one-dimensional signals, the Convolution Theorem states that the Fourier transform of the convolution between two signals is equal to the product of the Fourier Transforms of those two signals. Thus, convolution in the time domain is equal to multiplication in the frequency domain.

  7. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    For example, several lossy image and sound compression methods employ the discrete Fourier transform: the signal is cut into short segments, each is transformed, and then the Fourier coefficients of high frequencies, which are assumed to be unnoticeable, are discarded. The decompressor computes the inverse transform based on this reduced number ...

  8. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This ...

  9. Walsh function - Wikipedia

    en.wikipedia.org/wiki/Walsh_function

    Furthermore, both Fourier analysis on the unit interval (Fourier series) and on the real line (Fourier transform) have their digital counterparts defined via Walsh system, the Walsh series analogous to the Fourier series, and the Hadamard transform analogous to the Fourier transform.