Search results
Results From The WOW.Com Content Network
The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.
Amitsur–Levitzki theorem (linear algebra) Binomial inverse theorem (linear algebra) Birkhoff–Von Neumann theorem (linear algebra) Bregman–Minc inequality (discrete mathematics) Cauchy-Binet formula (linear algebra) Cayley–Hamilton theorem (Linear algebra) Dimension theorem for vector spaces (vector spaces, linear algebra)
The precise definition varies across fields of study. In classic philosophy, an axiom is a statement that is so evident or well-established, that it is accepted without controversy or question. [3] In modern logic, an axiom is a premise or starting point for reasoning. [4] In mathematics, an axiom may be a "logical axiom" or a "non-logical axiom".
The Archimedean property appears in Book V of Euclid's Elements as Definition 4: Magnitudes are said to have a ratio to one another which can, when multiplied, exceed one another. Because Archimedes credited it to Eudoxus of Cnidus it is also known as the "Theorem of Eudoxus" or the Eudoxus axiom. [3]
To show that a system S is required to prove a theorem T, two proofs are required. The first proof shows T is provable from S; this is an ordinary mathematical proof along with a justification that it can be carried out in the system S. The second proof, known as a reversal, shows that T itself implies S; this proof is carried out in the base ...
This glossary of linear algebra is a list of definitions and terms relevant to the field of linear algebra, the branch of mathematics concerned with linear equations and their representations as vector spaces. For a glossary related to the generalization of vector spaces through modules, see glossary of module theory
The author gives a proof in a simple enough case that the computations are reasonable, and then indicates that "in general" the proof is similar. index battle For proofs involving objects with multiple indices which can be solved by going to the bottom (if anyone wishes to take up the effort). Similar to diagram chasing. morally true
When Peano formulated his axioms, the language of mathematical logic was in its infancy. The system of logical notation he created to present the axioms did not prove to be popular, although it was the genesis of the modern notation for set membership (∈, which comes from Peano's ε).