When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    It was used in the world record calculations of 2.7 trillion digits of π in December 2009, [3] 10 trillion digits in October 2011, [4] [5] 22.4 trillion digits in November 2016, [6] 31.4 trillion digits in September 2018–January 2019, [7] 50 trillion digits on January 29, 2020, [8] 62.8 trillion digits on August 14, 2021, [9] 100 trillion ...

  3. A New Formula for Pi Is Here. And It’s Pushing Scientific ...

    www.aol.com/formula-pi-pushing-scientific...

    The digits of pi extend into infinity, and pi is itself an irrational number, meaning it can’t be truly represented by an integer fraction (the one we often learn in school, 22/7, is not very ...

  4. Spigot algorithm - Wikipedia

    en.wikipedia.org/wiki/Spigot_algorithm

    A variant of the spigot approach uses an algorithm which can be used to compute a single arbitrary digit of the transcendental without computing the preceding digits: an example is the Bailey–Borwein–Plouffe formula, a digit extraction algorithm for π which produces base 16 digits. The inevitable truncation of the underlying infinite ...

  5. Machin-like formula - Wikipedia

    en.wikipedia.org/wiki/Machin-like_formula

    Machin-like formulas for π can be constructed by finding a set of integers , =, where all the prime factorisations of ⁠ + ⁠, taken together, use a number of distinct primes , and then using either linear algebra or the LLL basis-reduction algorithm to construct linear combinations of arctangents of . For example, in the Størmer formula ...

  6. Bellard's formula - Wikipedia

    en.wikipedia.org/wiki/Bellard's_formula

    Bellard's formula was discovered by Fabrice Bellard in 1997. It is about 43% faster than the Bailey–Borwein–Plouffe formula (discovered in 1995). [1] [2] It has been used in PiHex, the now-completed distributed computing project. One important application is verifying computations of all digits of pi performed by other means.

  7. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    More formulas of this nature can be given, as explained by Ramanujan's theory of elliptic functions to alternative bases. Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function τ {\displaystyle \tau } and the Fourier coefficients j {\displaystyle \mathrm {j} } of the J-invariant ...

  8. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    Machin's particular formula was used well into the computer era for calculating record numbers of digits of π, [39] but more recently other similar formulae have been used as well. For instance, Shanks and his team used the following Machin-like formula in 1961 to compute the first 100,000 digits of π : [ 39 ]

  9. Simon Plouffe - Wikipedia

    en.wikipedia.org/wiki/Simon_Plouffe

    Simon Plouffe (born June 11, 1956) is a French Canadian mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the nth binary digit of π, in 1995. [1] [2] [3] His other 2022 formula allows extracting the nth digit of π in decimal. [4] He was born in Saint-Jovite, Quebec.