When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The orbit of every planet is an ellipse with the sun at one of the two foci. Kepler's first law placing the Sun at one of the foci of an elliptical orbit Heliocentric coordinate system (r, θ) for ellipse. Also shown are: semi-major axis a, semi-minor axis b and semi-latus rectum p; center of ellipse and its two foci marked by

  3. Apsidal precession - Wikipedia

    en.wikipedia.org/wiki/Apsidal_precession

    The apsides are the orbital points farthest (apoapsis) and closest (periapsis) from its primary body. The apsidal precession is the first time derivative of the argument of periapsis, one of the six main orbital elements of an orbit. Apsidal precession is considered positive when the orbit's axis rotates in the same direction as the orbital motion.

  4. Tests of general relativity - Wikipedia

    en.wikipedia.org/wiki/Tests_of_general_relativity

    where L is the semi-major axis, T is the orbital period, c is the speed of light, and e is the orbital eccentricity (see: Two-body problem in general relativity). The other planets experience perihelion shifts as well, but, since they are farther from the Sun and have longer periods, their shifts are lower, and could not be observed accurately ...

  5. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    The orbit of every planet is an ellipse with the Sun at one of the two foci. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time. The square of the orbital period of a planet is directly proportional to the cube of the semi-major axis of its orbit. Kepler published the first two laws in 1609 and the third ...

  6. Kepler orbit - Wikipedia

    en.wikipedia.org/wiki/Kepler_orbit

    In celestial mechanics, a Kepler orbit (or Keplerian orbit, named after the German astronomer Johannes Kepler) is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line.

  7. How do animals get their spots and stripes? Scientists reveal ...

    www.aol.com/animals-spots-stripes-scientists...

    Top: A male ornate boxfish (aracana ornata). Bottom left: a close-up of the boxfish’s natural hexagonal pattern. Bottom center: fish pattern simulation based on Turing’s reaction-diffusion theory.

  8. Orbital eccentricity - Wikipedia

    en.wikipedia.org/wiki/Orbital_eccentricity

    Orbital mechanics require that the duration of the seasons be proportional to the area of Earth's orbit swept between the solstices and equinoxes, so when the orbital eccentricity is extreme, the seasons that occur on the far side of the orbit can be substantially longer in duration.

  9. Earth's orbit - Wikipedia

    en.wikipedia.org/wiki/Earth's_orbit

    The six Earth images are positions along the orbital ellipse, which are sequentially the perihelion (periapsis—nearest point to the Sun) on anywhere from January 2 to January 5, the point of March equinox on March 19, 20, or 21, the point of June solstice on June 20, 21, or 22, the aphelion (apoapsis—the farthest point from the Sun) on ...