Search results
Results From The WOW.Com Content Network
The Van Slyke determination is a chemical test for the determination of amino acids containing a primary amine group. It is named after the biochemist Donald Dexter Van Slyke (1883-1971). [1] One of Van Slyke's first professional achievements was the quantification of amino acids by the Van Slyke determination reaction. [2]
Donald Dexter Van Slyke (March 29, 1883 – May 4, 1971), nicknamed Van, was a Dutch American biochemist. His achievements included the publication of 317 journal articles and 5 books, [ 1 ] as well as numerous awards, among them the National Medal of Science and the first AMA Scientific Achievement Award . [ 1 ]
When studying urease at about the same time as Michaelis and Menten were studying invertase, Donald Van Slyke and G. E. Cullen [29] made essentially the opposite assumption, treating the first step not as an equilibrium but as an irreversible second-order reaction with rate constant +. As their approach is never used today it is sufficient to ...
We solve the van der Pol oscillator only up to order 2. This method can be continued indefinitely in the same way, where the order-n term ϵ n x n {\displaystyle \epsilon ^{n}x_{n}} consists of a harmonic term a n cos ( t ) + b n cos ( t ) {\displaystyle a_{n}\cos(t)+b_{n}\cos(t)} , plus some super-harmonic terms a n , 2 cos ( 2 t ...
Other interference may come from the buffer used when preparing the protein sample. A high concentration of buffer will cause an overestimated protein concentration due to depletion of free protons from the solution by conjugate base from the buffer. This will not be a problem if a low concentration of protein (subsequently the buffer) is used. [6]
The van Deemter equation is a hyperbolic function that predicts that there is an optimum velocity at which there will be the minimum variance per unit column length and, thence, a maximum efficiency. The van Deemter equation was the result of the first application of rate theory to the chromatography elution process.
The Schultz theory is best used for the characterization of very high energy surfaces for which the other theories are ineffective, the most significant example being bare metals. The van Oss theory is most suitable for cases in which acid/base interaction is an important consideration. Examples include pigments, pharmaceuticals, and paper.
Total ionic strength adjustment buffer (TISAB) is a buffer solution which increases the ionic strength of a solution to a relatively high level. This is important for potentiometric measurements, including ion selective electrodes , because they measure the activity of the analyte rather than its concentration.