Search results
Results From The WOW.Com Content Network
In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable. [1]
The perceptron algorithm is also termed the single-layer perceptron, to distinguish it from a multilayer perceptron, which is a misnomer for a more complicated neural network. As a linear classifier, the single-layer perceptron is the simplest feedforward neural network .
In machine learning, a neural network (also artificial neural network or neural net, abbreviated ANN or NN) is a model inspired by the structure and function of biological neural networks in animal brains. [1] [2] An ANN consists of connected units or nodes called artificial neurons, which loosely model the neurons in the brain. Artificial ...
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset.
For example, multilayer perceptron (MLPs) and time delay neural network (TDNNs) have limitations on the input data flexibility, as they require their input data to be fixed. Standard recurrent neural network (RNNs) also have restrictions as the future input information cannot be reached from the current state. On the contrary, BRNNs do not ...
In quantum neural networks programmed on gate-model quantum computers, based on quantum perceptrons instead of variational quantum circuits, the non-linearity of the activation function can be implemented with no need of measuring the output of each perceptron at each layer.
As a simple example, consider a single neuron with threshold 0, and a single inhibitory self-loop. Its output would oscillate between 0 and 1 at every step, acting as a "clock". Any finite state machine can be simulated by a MCP neural network. [4] Furnished with an infinite tape, MCP neural networks can simulate any Turing machine. [5]
A large collection of Question to SPARQL specially design for Open Domain Neural Question Answering over DBpedia Knowledgebase. This dataset contains a large collection of Open Neural SPARQL Templates and instances for training Neural SPARQL Machines; it was pre-processed by semi-automatic annotation tools as well as by three SPARQL experts.