Search results
Results From The WOW.Com Content Network
Wikipedia-based Image Text Dataset 37.5 million image-text examples with 11.5 million unique images across 108 Wikipedia languages. 11,500,000 image, caption Pretraining, image captioning 2021 [7] Srinivasan e al, Google Research Visual Genome Images and their description 108,000 images, text Image captioning 2016 [8] R. Krishna et al.
[15] [16] MNIST included images only of handwritten digits. EMNIST includes all the images from NIST Special Database 19 (SD 19), which is a large database of 814,255 handwritten uppercase and lower case letters and digits. [17] [18] The images in EMNIST were converted into the same 28x28 pixel format, by the same process, as were the MNIST ...
CIFAR-10 is a labeled subset of the 80 Million Tiny Images dataset from 2008, published in 2009. When the dataset was created, students were paid to label all of the images. [5] Various kinds of convolutional neural networks tend to be the best at recognizing the images in CIFAR-10.
Some examples are: Image compression: In lossy image compression, information is deliberately discarded to decrease the storage space of images and video. The MSE is typically used in such compression schemes. According to its authors, using SSIM instead of MSE is suggested to produce better results for the decompressed images. [13]
Besides differences in the schema, there are several other differences between the earlier Office XML schema formats and Office Open XML. Whereas the data in Office Open XML documents is stored in multiple parts and compressed in a ZIP file conforming to the Open Packaging Conventions, Microsoft Office XML formats are stored as plain single monolithic XML files (making them quite large ...
Information about this dataset's format is available in the HuggingFace dataset card and the project's website. The dataset can be downloaded here, and the rejected data here. 2016 [343] Paperno et al. FLAN A re-preprocessed version of the FLAN dataset with updates since the original FLAN dataset was released is available in Hugging Face: test data
The basic intent of the contrast enhancement technique is to adjust the local contrast in the image so as to bring out the clear regions or objects in the image . Low-contrast images often result from poor or non-uniform lighting conditions, a limited dynamic range of the imaging sensor , or improper settings of the lens aperture.
The ImageNet project is a large visual database designed for use in visual object recognition software research. More than 14 million [1] [2] images have been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided. [3]