When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    This can then be fed into other AI models. [1] Text-to-Image Generation: Models like Stable Diffusion use CLIP's text encoder to transform text prompts into embeddings for image generation. [3] CLIP can also be used as a gradient signal for directly guiding diffusion ("CLIP guidance") [36] [37] or other generative art. [38]

  3. Bag-of-words model in computer vision - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model_in...

    In computer vision, the bag-of-words model (BoW model) sometimes called bag-of-visual-words model [1] [2] can be applied to image classification or retrieval, by treating image features as words. In document classification , a bag of words is a sparse vector of occurrence counts of words; that is, a sparse histogram over the vocabulary.

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Imagetext-pair dataset 10 billion pairs of alt-text and image sources in HTML documents in CommonCrawl 746,972,269 Images, Text Classification, Image-Language 2022 [31] SIFT10M Dataset SIFT features of Caltech-256 dataset. Extensive SIFT feature extraction. 11,164,866 Text Classification, object detection 2016 [32] X. Fu et al. LabelMe

  5. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The number of neurons in the middle layer is called intermediate size (GPT), [56] filter size (BERT), [36] or feedforward size (BERT). [36] It is typically larger than the embedding size. For example, in both GPT-2 series and BERT series, the intermediate size of a model is 4 times its embedding size: =.

  6. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    That is an "image token". Then, one can interleave text tokens and image tokens. The compound model is then fine-tuned on an image-text dataset. This basic construction can be applied with more sophistication to improve the model. The image encoder may be frozen to improve stability. [83]

  7. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    The Pooling layer [5] is used to reduce the size of data input. The Recurrent layer is used for text processing with a memory function. Similar to the Convolutional layer, the output of recurrent layers are usually fed into a fully-connected layer for further processing. See also: RNN model. [6] [7] [8] The Normalization layer adjusts the ...

  8. U-Net - Wikipedia

    en.wikipedia.org/wiki/U-Net

    Segmentation of a 512 × 512 image takes less than a second on a modern (2015) GPU using the U-Net architecture. [1] [3] [4] [5] The U-Net architecture has also been employed in diffusion models for iterative image denoising. [6] This technology underlies many modern image generation models, such as DALL-E, Midjourney, and Stable Diffusion.

  9. MNIST database - Wikipedia

    en.wikipedia.org/wiki/MNIST_database

    Each was size-normalized to fit in a 20x20 pixel box while preserving their aspect ratio, and anti-aliased to grayscale. Then it was put into a 28x28 image by translating it until the center of mass of the pixels is in the center of the image. The details of how the downsampling proceeded was reconstructed. [13]