Search results
Results From The WOW.Com Content Network
From any point on the circumcircle of a triangle, the nearest points on each of the three extended sides of the triangle are collinear in the Simson line of the point on the circumcircle. The lines connecting the feet of the altitudes intersect the opposite sides at collinear points. [3]: p.199
It means the general case situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings. For example, generically, two lines in the plane intersect in a single point (they are not parallel or coincident).
This occurs if the lines are parallel, or if they intersect each other. Two lines that are not coplanar are called skew lines . Distance geometry provides a solution technique for the problem of determining whether a set of points is coplanar, knowing only the distances between them.
The number of vertices is smaller when some lines are parallel, or when some vertices are crossed by more than two lines. [4] An arrangement can be rotated, if necessary, to avoid axis-parallel lines. After this step, each ray that forms an edge of the arrangement extends either upward or downward from its endpoint; it cannot be horizontal.
There exist four points such that no three are collinear (points not on a single line). In an affine plane, two lines are called parallel if they are equal or disjoint. Using this definition, Playfair's axiom above can be replaced by: [2] Given a point and a line, there is a unique line which contains the point and is parallel to the line.
The line AB is the interval AB and the two rays A/B and B/A. Points on the line AB are said to be collinear. An angle consists of a point O (the vertex) and two non-collinear rays out from O (the sides). A triangle is given by three non-collinear points (called vertices) and their three segments AB, BC, and CA.
In Euclidean and projective geometry, five points determine a conic (a degree-2 plane curve), just as two (distinct) points determine a line (a degree-1 plane curve).There are additional subtleties for conics that do not exist for lines, and thus the statement and its proof for conics are both more technical than for lines.
The Simson line LN (red) of the triangle ABC with respect to point P on the circumcircle. In geometry, given a triangle ABC and a point P on its circumcircle, the three closest points to P on lines AB, AC, and BC are collinear. [1] The line through these points is the Simson line of P, named for Robert Simson. [2]