Search results
Results From The WOW.Com Content Network
A simple example to illustrate genotype as distinct from phenotype is the flower colour in pea plants (see Gregor Mendel). There are three available genotypes, PP (homozygous dominant), Pp (heterozygous), and pp (homozygous recessive). All three have different genotypes but the first two have the same phenotype (purple) as distinct from the ...
For example, in the ABO blood group system, chemical modifications to a glycoprotein (the H antigen) on the surfaces of blood cells are controlled by three alleles, two of which are co-dominant to each other (I A, I B) and dominant over the recessive i at the ABO locus. The I A and I B alleles produce different modifications.
Since the homozygous recessive individual can only pass on recessive alleles, the allele the individual in question passes on determines the phenotype of the offspring. [3] Thus, this test yields 2 possible situations: If any of the offspring produced express the recessive trait, the individual in question is heterozygous for the dominant ...
In a dominant-recessive inheritance, an average of 25% are homozygous with the dominant trait, 50% are heterozygous showing the dominant trait in the phenotype (genetic carriers), 25% are homozygous with the recessive trait and therefore express the recessive trait in the phenotype. The genotypic ratio is 1: 2 : 1, and the phenotypic ratio is 3: 1.
An individual that is homozygous-recessive for a particular trait carries two copies of the allele that codes for the recessive trait. This allele, often called the "recessive allele", is usually represented by the lowercase form of the letter used for the corresponding dominant trait (such as, with reference to the example above, "p" for the ...
Figure 1: Inheritance pattern of dominant (red) and recessive (white) phenotypes when each parent (1) is homozygous for either the dominant or recessive trait. All members of the F 1 generation are heterozygous and share the same dominant phenotype (2), while the F 2 generation exhibits a 6:2 ratio of dominant to recessive phenotypes (3).
An amorphic allele elicits the same phenotype when homozygous and when heterozygous to a chromosomal deletion or deficiency that disrupts the same gene. [2] This relationship can be represented as follows: m/m = m/Df An amorphic allele is commonly recessive to its wildtype counterpart.
The difference between dominant and recessive inheritance patterns also plays a role in determining the chances of a child inheriting an X-linked disorder from their parentage. [ citation needed ] X-linked dominant disorders tend to affect females more often because they tend to be developmentally fatal in males.