When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bootstrapping (statistics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(statistics)

    This bootstrap works with dependent data, however, the bootstrapped observations will not be stationary anymore by construction. But, it was shown that varying randomly the block length can avoid this problem. [30] This method is known as the stationary bootstrap.

  3. Bootstrap error-adjusted single-sample technique - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_error-adjusted...

    A nondestructive method is valuable. A method such as NIRA [clarification needed] can be coupled to the BEST method in the following ways. [1] Detect any tampered product by determining that it is not similar to the previously analyzed unaltered product. Quantitatively identify the contaminant from a library of known adulterants in that product.

  4. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    The best example of the plug-in principle, the bootstrapping method. Bootstrapping is a statistical method for estimating the sampling distribution of an estimator by sampling with replacement from the original sample, most often with the purpose of deriving robust estimates of standard errors and confidence intervals of a population parameter like a mean, median, proportion, odds ratio ...

  5. Bootstrapping - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping

    In general, bootstrapping usually refers to a self-starting process that is supposed to continue or grow without external input. Many analytical techniques are often called bootstrap methods in reference to their self-starting or self-supporting implementation, such as bootstrapping (statistics), bootstrapping (finance), or bootstrapping (linguistics).

  6. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    Bootstrap aggregating, also called bagging (from bootstrap aggregating) or bootstrapping, is a machine learning (ML) ensemble meta-algorithm designed to improve the stability and accuracy of ML classification and regression algorithms.

  7. Jackknife resampling - Wikipedia

    en.wikipedia.org/wiki/Jackknife_resampling

    The jackknife pre-dates other common resampling methods such as the bootstrap. Given a sample of size n {\displaystyle n} , a jackknife estimator can be built by aggregating the parameter estimates from each subsample of size ( n − 1 ) {\displaystyle (n-1)} obtained by omitting one observation.

  8. Bootstrapping (electronics) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(electronics)

    Bootstrapping is a technique in the field of electronics where part of the output of a system is used at startup.. A bootstrap circuit is one where part of the output of an amplifier stage is applied to the input, so as to alter the input impedance of the amplifier.

  9. Bootstrapping (finance) - Wikipedia

    en.wikipedia.org/wiki/Bootstrapping_(finance)

    In finance, bootstrapping is a method for constructing a (zero-coupon) fixed-income yield curve from the prices of a set of coupon-bearing products, e.g. bonds and swaps. [ 1 ] A bootstrapped curve , correspondingly, is one where the prices of the instruments used as an input to the curve, will be an exact output , when these same instruments ...